Motto: Representing Motifs in Consensus Sequences with Minimum Information Loss

Author:

Wang Mengchi1,Wang David2,Zhang Kai1,Ngo Vu1,Fan Shicai23,Wang Wei124

Affiliation:

1. Bioinformatics and Systems Biology, University of California at San Diego, La Jolla, California 92093

2. Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093

3. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China 610054

4. Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093

Abstract

Abstract Sequence analysis frequently requires intuitive understanding and convenient representation of motifs. Typically, motifs are represented as position weight matrices (PWMs) and visualized using sequence logos. However, in many scenarios, in order to interpret the motif information or search for motif matches, it is compact and sufficient to represent motifs by wildcard-style consensus sequences (such as [GC][AT]GATAAG[GAC]). Based on mutual information theory and Jensen-Shannon divergence, we propose a mathematical framework to minimize the information loss in converting PWMs to consensus sequences. We name this representation as sequence Motto and have implemented an efficient algorithm with flexible options for converting motif PWMs into Motto from nucleotides, amino acids, and customized characters. We show that this representation provides a simple and efficient way to identify the binding sites of 1156 common transcription factors (TFs) in the human genome. The effectiveness of the method was benchmarked by comparing sequence matches found by Motto with PWM scanning results found by FIMO. On average, our method achieves a 0.81 area under the precision-recall curve, significantly (P-value < 0.01) outperforming all existing methods, including maximal positional weight, Cavener’s method, and minimal mean square error. We believe this representation provides a distilled summary of a motif, as well as the statistical justification.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3