Signaling by AWC Olfactory Neurons Is Necessary for Caenorhabditis elegans’ Response to Prenol, an Odor Associated with Nematode-Infected Insects

Author:

Baiocchi Tiffany1,Anesko Kyle1,Mercado Nathan1,Park Heenam2,Kin Kassandra1,Strickhouser-Monzon Brandon1,Robles Priscila1,Bowman Christian1,Wang Han2,Sternberg Paul W2,Dillman Adler R1

Affiliation:

1. Department of Nematology, University of California, Riverside, California 92521

2. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125

Abstract

Abstract Chemosensation plays a role in the behaviors and life cycles of numerous organisms, including nematodes. Many guilds of nematodes exist, ranging from the free-living Caenorhabditis elegans to various parasitic species such as entomopathogenic nematodes (EPNs), which are parasites of insects. Despite ecological differences, previous research has shown that both EPNs and C. elegans respond to prenol (3-methyl-2-buten-1-ol), an odor associated with EPN infections. However, it is unclear how C. elegans responds to prenol. By utilizing natural variation and genetic neuron ablation to investigate the response of C. elegans to prenol, we found that the AWC neurons are involved in the detection of prenol and that several genes (including dcap-1, dcap-2, and clec-39) influence response to this odorant. Furthermore, we identified that the response to prenol is mediated by the canonically proposed pathway required for other AWC-sensed attractants. However, upon testing genetically diverse isolates, we found that the response of some strains to prenol differed from their response to isoamyl alcohol, suggesting that the pathways mediating response to these two odorants may be genetically distinct. Further, evaluations leveraging natural variation and genome wide association revealed specific genes that influence nematode behavior and provide a foundation for future studies to better understand the role of prenol in nematode behavioral ecology.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3