The shavenoid Gene of Drosophila Encodes a Novel Actin Cytoskeleton Interacting Protein That Promotes Wing Hair Morphogenesis

Author:

Ren Nan1,He Biao,Stone David1,Kirakodu Sreenatha,Adler Paul N1

Affiliation:

1. Biology Department, Cancer Center and Morphogenesis and Regenerative Medicine Institute, University of Virginia, Charlottesville, Virginia 22903

Abstract

Abstract The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular- and tissue-level morphogenesis. The developing hairs are filled with F-actin and microtubules and the activity of these cytoskeletons is important for hair morphogenesis. On the basis of mutant phenotypes several genes have been identified as playing a key role in stimulating hair formation. Mutations in shavenoid (sha) (also known as kojak) result in a delay in hair morphogenesis and in some cells forming no hair and others several small hairs. We report here the molecular identification and characterization of the sha gene and protein. sha encodes a large novel protein that has homologs in other insects, but not in more distantly related organisms. The Sha protein accumulated in growing hairs and bristles in a pattern that suggested that it could directly interact with the actin cytoskeleton. Consistent with this mechanism of action we found that Sha and actin co-immunopreciptated from wing disc cells. The morphogenesis of the hair involves temporal control by sha and spatial control by the genes of the frizzled planar polarity pathway. We found a strong genetic interaction between mutations in these genes consistent with their having a close but parallel functional relationship.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3