Power to Detect Higher-Order Epistatic Interactions in a Metabolic Pathway Using a New Mapping Strategy

Author:

Stich Benjamin12,Yu Jianming2,Melchinger Albrecht E1,Piepho Hans-Peter3,Utz H Friedrich1,Maurer Hans P1,Buckler Edward S245

Affiliation:

1. Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany

2. Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853

3. Institute for Crop Production and Grassland Research, University of Hohenheim, 70593 Stuttgart, Germany

4. United States Department of Agriculture–Agricultural Research Service, Washington DC 20250 and

5. Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853

Abstract

Abstract Epistatic interactions among quantitative trait loci (QTL) contribute substantially to the variation in complex traits. The main objectives of this study were to (i) compare three- vs. four-step genome scans to identify three-way epistatic interactions among QTL belonging to a metabolic pathway, (ii) investigate by computer simulations the power and proportion of false positives (PFP) for detecting three-way interactions among QTL in recombinant inbred line (RIL) populations derived from a nested mating design, and (iii) compare these estimates to those obtained for detecting three-way interactions among QTL in RIL populations derived from diallel and different partial diallel mating designs. The single-nucleotide polymorphism haplotype data of B73 and 25 diverse maize inbreds were used to simulate the production of various RIL populations. Compared to the three-step genome scan, the power to detect three-way interactions was higher with the four-step genome scan. Higher power to detect three-way interactions was observed for RILs derived from optimally allocated distance-based designs than from nested designs or diallel designs. The power and PFP to detect three-way interactions using a nested design with 5000 RILs were for both the 4-QTL and the 12-QTL scenario of a magnitude that seems promising for their identification.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3