Systems Genomics of Metabolic Phenotypes in Wild-Type Drosophila melanogaster

Author:

Reed Laura K1,Lee Kevin2,Zhang Zhi3,Rashid Lubna2,Poe Amy2,Hsieh Benjamin2,Deighton Nigel45,Glassbrook Norm46,Bodmer Rolf3,Gibson Greg2

Affiliation:

1. Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35497

2. School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332

3. Development and Aging Program, Sanford-Burnham Medical Research Institute, San Diego, California 92037

4. Genomic Sciences Laboratory, North Carolina State University, Raleigh, North Carolina 27695

5. Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802

6. Bayer CropScience, Monheim, 40789, Germany

Abstract

Abstract Systems biology is an approach to dissection of complex traits that explicitly recognizes the impact of genetic, physiological, and environmental interactions in the generation of phenotypic variation. We describe comprehensive transcriptional and metabolic profiling in Drosophila melanogaster across four diets, finding little overlap in modular architecture. Genotype and genotype-by-diet interactions are a major component of transcriptional variation (24 and 5.3% of the total variation, respectively) while there were no main effects of diet (<1%). Genotype was also a major contributor to metabolomic variation (16%), but in contrast to the transcriptome, diet had a large effect (9%) and the interaction effect was minor (2%) for the metabolome. Yet specific principal components of these molecular phenotypes measured in larvae are strongly correlated with particular metabolic syndrome-like phenotypes such as pupal weight, larval sugar content and triglyceride content, development time, and cardiac arrhythmia in adults. The second principal component of the metabolomic profile is especially informative across these traits with glycine identified as a key loading variable. To further relate this physiological variability to genotypic polymorphism, we performed evolve-and-resequence experiments, finding rapid and replicated changes in gene frequency across hundreds of loci that are specific to each diet. Adaptation to diet is thus highly polygenic. However, loci differentially transcribed across diet or previously identified by RNAi knockdown or expression QTL analysis were not the loci responding to dietary selection. Therefore, loci that respond to the selective pressures of diet cannot be readily predicted a priori from functional analyses.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3