Evolution Rapidly Optimizes Stability and Aggregation in Lattice Proteins Despite Pervasive Landscape Valleys and Mazes

Author:

Bertram Jason12,Masel Joanna3

Affiliation:

1. Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47401

2. Department of Biology, Indiana University, Bloomington, Indiana 47401

3. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721

Abstract

Abstract The fitness landscapes of genetic sequences are high-dimensional and “rugged” due to sign epistasis. Empirical limitations and the abstractness of many landscape models limit our understanding of how ruggedness shapes the mode and tempo... The “fitness” landscapes of genetic sequences are characterized by high dimensionality and “ruggedness” due to sign epistasis. Ascending from low to high fitness on such landscapes can be difficult because adaptive trajectories get stuck at low-fitness local peaks. Compounding matters, recent theoretical arguments have proposed that extremely long, winding adaptive paths may be required to reach even local peaks: a “maze-like” landscape topography. The extent to which peaks and mazes shape the mode and tempo of evolution is poorly understood, due to empirical limitations and the abstractness of many landscape models. We explore the prevalence, scale, and evolutionary consequences of landscape mazes in a biophysically grounded computational model of protein evolution that captures the “frustration” between “stability” and aggregation propensity. Our stability-aggregation landscape exhibits extensive sign epistasis and local peaks galore. Although this frequently obstructs adaptive ascent to high fitness and virtually eliminates reproducibility of evolutionary outcomes, many adaptive paths do successfully complete the ascent from low to high fitness, with hydrophobicity a critical mediator of success. These successful paths exhibit maze-like properties on a global landscape scale, in which taking an indirect path helps to avoid low-fitness local peaks. This delicate balance of “hard but possible” adaptation could occur more broadly in other biological settings where competing interactions and frustration are important.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3