Affiliation:
1. Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
Abstract
Abstract
Bacteriophages are the most abundant biological entities in our biosphere, characterized by their hyperplasticity, mosaic composition, and the many unknown functions (ORFans) encoded by their immense genetic repertoire. These genes are potentially maintained by the bacteriophage to allow efficient propagation on hosts encountered in nature. To test this hypothesis, we devised a selection to identify bacteriophage-encoded gene(s) that modulate the host Escherichia coli GroEL/GroES chaperone machine, which is essential for the folding of certain host and bacteriophage proteins. As a result, we identified the bacteriophage RB69 gene 39.2, of previously unknown function and showed that homologs of 39.2 in bacteriophages T4, RB43, and RB49 similarly modulate GroEL/GroES.
Production of wild-type bacteriophage T4 Gp39.2, a 58-amino-acid protein, (a) enables diverse bacteriophages to plaque on the otherwise nonpermissive groES or groEL mutant hosts in an allele-specific manner, (b) suppresses the temperature-sensitive phenotype of both groES and groEL mutants, (c) suppresses the defective UV-induced PolV function (UmuCD) of the groEL44 mutant, and (d) is lethal to the host when overproduced. Finally, as proof of principle that Gp39.2 is essential for bacteriophage growth on certain bacterial hosts, we constructed a T4 39.2 deletion strain and showed that, unlike the isogenic wild-type parent, it is incapable of propagating on certain groEL mutant hosts. We propose a model of how Gp39.2 modulates GroES/GroEL function.
Publisher
Oxford University Press (OUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献