Regulation of Axon Guidance by Slit and Netrin Signaling in the Drosophila Ventral Nerve Cord

Author:

Bhat Krishna Moorthi1,Gaziova Ivana1,Krishnan Smitha1

Affiliation:

1. Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, Texas 77555

Abstract

Abstract Netrin and Slit signaling systems play opposing roles during the positioning of longitudinal tracts along the midline in the ventral nerve cord of Drosophila embryo. It has been hypothesized that a gradient of Slit from the midline interacts with three different Robo receptors to specify the axon tract positioning. However, no such gradient has been detected. Moreover, overexpression of Slit at the midline has no effect on the positioning of these lateral tracts. In this article, we show that Slit is present outside of the midline along the longitudinal and commissural tracts. Sli from the midline, in a Robo-independent manner, is initially taken up by the commissural axon tracts when they cross the midline and is transported along the commissural tracts into the longitudinal connectives. These results are not consistent with a Sli gradient model. We also find that sli mRNA is maternally deposited and embryos that are genetically null for sli can have weaker guidance defects. Moreover, in robo or robo3 mutants, embryos with normal axon tracts are found and such robo embryos reach pupal stages and die, while robo3 mutant embryos develop into normal individuals and produce eggs. Interestingly, embryos from robo3 homozygous individuals fail to develop but have axon tracts ranging from normal to various defects: robo3 phenotype, robo phenotype, and slit-like phenotype, suggesting a more complex functional role for these genes than what has been proposed. Finally, our previous results indicated that netrin phenotype is epistatic to sli or robo phenotypes. However, it seems likely that this previously reported epistatic relationship might be due to the partial penetrance of the sli, robo, robo3 (or robo2) phenotypes. Our results argue that double mutant epistasis is most definitive only if the penetrance of the phenotypes of the mutants involved is complete.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3