Affiliation:
1. Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
2. Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
Abstract
Abstract
The Drosophila Synthetic Population Resource (DSPR) is a newly developed multifounder advanced intercross panel consisting of >1600 recombinant inbred lines (RILs) designed for the genetic dissection of complex traits. Here, we describe the inference of the underlying mosaic founder structure for the full set of RILs from a dense set of semicodominant restriction-site–associated DNA (RAD) markers and use simulations to explore how variation in marker density and sequencing coverage affects inference. For a given sequencing effort, marker density is more important than sequence coverage per marker in terms of the amount of genetic information we can infer. We also assessed the power of the DSPR by assigning genotypes at a hidden QTL to each RIL on the basis of the inferred founder state and simulating phenotypes for different experimental designs, different genetic architectures, different sample sizes, and QTL of varying effect sizes. We found the DSPR has both high power (e.g., 84% power to detect a 5% QTL) and high mapping resolution (e.g., ∼1.5 cM for a 5% QTL).
Publisher
Oxford University Press (OUP)
Cited by
173 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献