Multilevel Selection 2: Estimating the Genetic Parameters Determining Inheritance and Response to Selection

Author:

Bijma Piter1,Muir William M2,Ellen Esther D1,Wolf Jason B3,Van Arendonk Johan A M1

Affiliation:

1. Animal Breeding and Genetics Group, Wageningen University, 6709PG Wageningen, The Netherlands

2. Department of Animal Science, Purdue University, West Lafayette, Indiana 47907-1151 and

3. Faculty of Life Sciences, University of Manchester, Manchester, M12 9PT, United Kingdom

Abstract

Abstract Interactions among individuals are universal, both in animals and in plants and in natural as well as domestic populations. Understanding the consequences of these interactions for the evolution of populations by either natural or artificial selection requires knowledge of the heritable components underlying them. Here we present statistical methodology to estimate the genetic parameters determining response to multilevel selection of traits affected by interactions among individuals in general populations. We apply these methods to obtain estimates of genetic parameters for survival days in a population of layer chickens with high mortality due to pecking behavior. We find that heritable variation is threefold greater than that obtained from classical analyses, meaning that two-thirds of the full heritable variation is hidden to classical analysis due to social interactions. As a consequence, predicted responses to multilevel selection applied to this population are threefold greater than classical predictions. This work, combined with the quantitative genetic theory for response to multilevel selection presented in an accompanying article in this issue, enables the design of selection programs to effectively reduce competitive interactions in livestock and plants and the prediction of the effects of social interactions on evolution in natural populations undergoing multilevel selection.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3