Pronounced Differences of Recombination Activity at the Sex Determination Locus of the Honeybee, a Locus Under Strong Balancing Selection

Author:

Hasselmann Martin1,Beye Martin1

Affiliation:

1. Heinrich Heine Universität Düsseldorf, Institut für Genetik, 40225 Düsseldorf, Germany

Abstract

Abstract Recombination decreases the association of linked nucleotide sites and can influence levels of polymorphism in natural populations. When coupled with selection, recombination may relax potential conflict among linked genes, a concept that has played a central role in research on the evolution of recombination. The sex determination locus (SDL) of the honeybee is an informative example for exploring the combined forces of recombination, selection, and linkage on sequence evolution. Balancing selection at SDL is very strong and homozygous individuals at SDL are eliminated by worker bees. The recombination rate is increased up to four times that of the genomewide average in the region surrounding SDL. Analysis of nucleotide diversity (π) reveals a sevenfold increase of polymorphism within the sex determination gene complementary sex determiner (csd) that rapidly declines within 45 kb to levels of genomewide estimates. Although no recombination was observed within SDL, which contains csd, analyses of heterogeneity, shared polymorphic sites, and linkage disequilibrium (LD) show that recombination has contributed to the evolution of the 5′ part of some csd sequences. Gene conversion, however, has not obviously contributed to the evolution of csd sequences. The local control of recombination appears to be related to SDL function and mode of selection. The homogenizing force of recombination is reduced within SDL, which preserves allelic differences and specificity, while the increase of recombination activity around SDL relaxes conflict between SDL and linked genes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3