Structure Prediction-Driven Genetics in Saccharomyces cerevisiae Identifies an Interface Between the t-RPA Proteins Stn1 and Ten1

Author:

Paschini Margherita12,Mandell Edward K1,Lundblad Victoria1

Affiliation:

1. Salk Institute for Biological Studies, La Jolla, California 92037-1099 and

2. Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0130

Abstract

Abstract In Saccharomyces cerevisiae, Cdc13, Stn1, and Ten1 are essential for both chromosome capping and telomere length homeostasis. These three proteins have been proposed to perform their roles at chromosome termini as a telomere-dedicated t-RPA complex, on the basis of several parallels with the conventional RPA complex. In this study, we have used several approaches to test whether a predicted α-helix in the N-terminal domain of the S. cerevisiae Stn1 protein is required for formation of the proposed t-RPA complex, in a manner analogous to the comparable helix in Rpa2. Analysis of a panel of Rpa2–OBStn1 chimeras indicates that whether a chimeric protein contains the Rpa2 or Stn1 version of this α-helix dictates its ability to function in place of Rpa2 or Stn1, respectively. In addition, mutations introduced into a hydrophobic surface of the predicted Stn1 α-helix eliminated association with Ten1. Strikingly, allele-specific suppression of a stn1 mutation in this helix (stn1–L164D) by a ten1 mutation (ten1–D138Y) resulted in a restored Stn1–Ten1 interaction, supporting the identification of a Stn1–Ten1 interface. We conclude that Stn1 interacts with Ten1 through an α-helix, in a manner analogous to the interaction between the comparable subunits of the RPA complex.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3