Nonlinear Tests for Genomewide Association Studies

Author:

Zhao Jinying1,Jin Li23,Xiong Momiao12

Affiliation:

1. Human Genetics Center, University of Texas Health Science Center, Houston, Texas 77030

2. Laboratory of Theoretical Systems Biology, School of Life Science, Fudan University, Shanghai 200433, China and

3. CAS-MPG Partner Institute of Computational Biology, SIBS, CAS, Shanghai 200031, China

Abstract

Abstract As millions of single-nucleotide polymorphisms (SNPs) have been identified and high-throughput genotyping technologies have been rapidly developed, large-scale genomewide association studies are soon within reach. However, since a genomewide association study involves a large number of SNPs it is therefore nearly impossible to ensure a genomewide significance level of 0.05 using the available statistics, although the multiple-test problems can be alleviated, but not sufficiently, by the use of tagging SNPs. One strategy to circumvent the multiple-test problem associated with genome-wide association tests is to develop novel test statistics with high power. In this report, we introduce several nonlinear tests, which are based on nonlinear transformation of allele or haplotype frequencies. We investigate the power of the nonlinear test statistics and demonstrate that under certain conditions, some nonlinear test statistics have much higher power than the standard $\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{{\chi}}^{2}\) \end{document}$-test statistic. Type I error rates of the nonlinear tests are validated using simulation studies. We also show that a class of similarity measure-based test statistics is based on the quadratic function of allele or haplotype frequencies, and thus they belong to nonlinear tests. To evaluate their performance, the nonlinear test statistics are also applied to three real data sets. Our study shows that nonlinear test statistics have great potential in association studies of complex diseases.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information Theory in Computational Biology: Where We Stand Today;Entropy;2020-06-06

2. Transgenerational Interaction of Alzheimer’s Disease with Schizophrenia through Amyloid Evolvability;Journal of Alzheimer's Disease;2019-03-29

3. Assessing Gene-Environment Interactions in Genome-Wide Association Studies (GWAS): Statistical Approaches;Methods in Statistical Genomics: In the Context of Genome-Wide Association Studies;2016-08-30

4. Human genetics of diabetic nephropathy;Renal Failure;2015-01-16

5. Human genetics of diabetic retinopathy;Journal of Endocrinological Investigation;2014-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3