The Fractionated Orthology of Bs2 and Rx/Gpa2 Supports Shared Synteny of Disease Resistance in the Solanaceae

Author:

Mazourek Michael1,Cirulli Elizabeth T1,Collier Sarah M12,Landry Laurie G1,Kang Byoung-Cheorl13,Quirin Edmund A4,Bradeen James M4,Moffett Peter2,Jahn Molly M5

Affiliation:

1. Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853

2. Boyce Thompson Institute for Plant Research, Ithaca, New York 14853

3. Department of Plant Sciences, Seoul National University, Seoul 151-921, Korea

4. Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 and

5. College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Abstract Comparative genomics provides a powerful tool for the identification of genes that encode traits shared between crop plants and model organisms. Pathogen resistance conferred by plant R genes of the nucleotide-binding–leucine-rich-repeat (NB–LRR) class is one such trait with great agricultural importance that occupies a critical position in understanding fundamental processes of pathogen detection and coevolution. The proposed rapid rearrangement of R genes in genome evolution would make comparative approaches tenuous. Here, we test the hypothesis that orthology is predictive of R-gene genomic location in the Solanaceae using the pepper R gene Bs2. Homologs of Bs2 were compared in terms of sequence and gene and protein architecture. Comparative mapping demonstrated that Bs2 shared macrosynteny with R genes that best fit criteria determined to be its orthologs. Analysis of the genomic sequence encompassing solanaceous R genes revealed the magnitude of transposon insertions and local duplications that resulted in the expansion of the Bs2 intron to 27 kb and the frequently detected duplications of the 5′-end of R genes. However, these duplications did not impact protein expression or function in transient assays. Taken together, our results support a conservation of synteny for NB–LRR genes and further show that their distribution in the genome has been consistent with global rearrangements.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3