Communication Between Parental and Developing Genomes During Tetrahymena Nuclear Differentiation Is Likely Mediated by Homologous RNAs

Author:

Chalker Douglas L1,Fuller Patrick2,Yao Meng-Chao23

Affiliation:

1. Department of Biology, Washington University, Saint Louis, Missouri 63130

2. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

3. Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China

Abstract

Abstract Approximately 6000 DNA elements, totaling nearly 15 Mb, are coordinately excised from the developing somatic genome of Tetrahymena thermophila. An RNA interference (RNAi)-related mechanism has been implicated in the targeting of these germline-limited sequences for chromatin modification and subsequent DNA rearrangement. The excision of individual DNA segments can be inhibited if the homologous sequence is placed within the parental somatic nucleus, indicating that communication occurs between the parental and developing genomes. To determine how the DNA content of one nucleus is communicated to the other, we assessed DNA rearrangement occurring in wild-type cells that were mated to cells that contained the normally germline-limited M element within their somatic nuclei. M-element rearrangement was blocked in the wild-type cell even when no genetic exchange occurred between mating partners, a finding that is inconsistent with any genetic imprinting models. This inhibition by the parental somatic nucleus was rapidly established between 5 and 6 hr of conjugation, near or shortly after the time that zygotic nuclei are formed. M-element small RNAs (sRNAs) that are believed to direct its rearrangement were found to rapidly accumulate during the first few hours of conjugation before stabilizing to a low, steady-state level. The period between 5 and 6 hr during which sRNA levels stabilize correlates with the time after which the parental genome can block DNA rearrangement. These data lead us to suggest that homologous sRNAs serve as mediators to communicate sequence-specific information between the parental and developing genomes, thereby regulating genome-wide DNA rearrangement, and that these sRNAs can be effectively compared to the somatic genome of both parents.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3