Adaptive Functional Divergence Among Triplicated α-Globin Genes in Rodents

Author:

Storz Jay F1,Hoffmann Federico G1,Opazo Juan C1,Moriyama Hideaki2

Affiliation:

1. School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and

2. Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588

Abstract

Abstract The functional divergence of duplicated genes is thought to play an important role in the evolution of new developmental and physiological pathways, but the role of positive selection in driving this process remains controversial. The objective of this study was to test whether amino acid differences among triplicated α-globin paralogs of the Norway rat (Rattus norvegicus) and the deer mouse (Peromyscus maniculatus) are attributable to a relaxation of purifying selection or to a history of positive selection that has adapted the gene products to new or modified physiological tasks. In each rodent species, the two paralogs at the 5′-end of the α-globin gene cluster (HBA-T1 and HBA-T2) are evolving in concert and are therefore identical or nearly identical in sequence. However, in each case, the HBA-T1 and HBA-T2 paralogs are distinguished from the third paralog at the 3′-end of the gene cluster (HBA-T3) by multiple amino acid substitutions. An analysis of genomic sequence data from several rodent species revealed that the HBA-T3 genes of Rattus and Peromyscus originated via independent, lineage-specific duplication events. In the independently derived HBA-T3 genes of both species, a likelihood analysis based on a codon-substitution model revealed that accelerated rates of amino acid substitution are attributable to positive directional selection, not to a relaxation of purifying selection. As a result of functional divergence among the triplicated α-globin genes in Rattus and Peromyscus, the red blood cells of both rodent species contain a mixture of functionally distinct α-chain hemoglobin isoforms that are predicted to have different oxygen-binding affinities. In P. maniculatus, a species that is able to sustain physiological function under conditions of chronic hypoxia at high altitude, the coexpression of distinct hemoglobin isoforms with graded oxygen affinities is expected to broaden the permissible range of arterial oxygen tensions for pulmonary/tissue oxygen transport.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3