The Genetic Basis of Rapidly Evolving Male Genital Morphology in Drosophila

Author:

Masly John P12,Dalton Justin E1,Srivastava Sudeep1,Chen Liang1,Arbeitman Michelle N13

Affiliation:

1. Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089

2. Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019

3. Program in Biomedical Sciences, Florida State University Medical College, Tallahassee, Florida 32306

Abstract

Abstract The external genitalia are some of the most rapidly evolving morphological structures in insects. The posterior lobe of the male genital arch shows striking differences in both size and shape among closely related species of the Drosophila melanogaster species subgroup. Here, we dissect the genetic basis of posterior lobe morphology between D. mauritiana and D. sechellia, two island endemic species that last shared a common ancestor ∼300,000 years ago. We test a large collection of genome-wide homozygous D. mauritiana genetic introgressions, which collectively cover ∼50% of the genome, for their morphological effects when placed in a D. sechellia genetic background. We find several introgressions that have large effects on posterior lobe morphology and that posterior lobe size and posterior lobe shape can be separated genetically for some of the loci that specify morphology. Using next generation sequencing technology, we perform whole transcriptome gene expression analyses of the larval genital imaginal disc of D. mauritiana, D. sechellia, and two D. mauritiana–D. sechellia hybrid introgression genotypes that each have large effects on either posterior lobe size or posterior lobe shape. Many of the genes we identify as differentially expressed are expressed at levels similar to D. mauritiana in one introgression hybrid, but are expressed at levels similar to D. sechellia in the other introgression hybrid. However, we also find that both introgression hybrids express some of the same genes at levels similar to D. mauritiana, and notably, that both introgression hybrids possess genes in the insulin receptor signaling pathway, which are expressed at D. mauritiana expression levels. These results suggest the possibility that the insulin signaling pathway might integrate size and shape genetic inputs to establish differences in overall posterior lobe morphology between D. mauritiana and D. sechellia.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference123 articles.

1. Image Processing with ImageJ;Abramoff;Biophotonics International,2004

2. Bmp4 and morphological variation of beaks in Darwin’s finches;Abzhanov;Science,2004

3. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches;Abzhanov;Nature,2006

4. Methods for quantitative analysis of transcription in larvae and prepupae;Andres;Methods Cell Biol.,1994

5. The RSK family of kinases: emerging roles in cellular signalling;Anjum;Nat. Rev. Mol. Cell Biol.,2008

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3