Reproductive Isolation in Hybrid Mice Due to Spermatogenesis Defects at Three Meiotic Stages

Author:

Oka Ayako12,Mita Akihiko2,Takada Yuki3,Koseki Haruhiko3,Shiroishi Toshihiko2

Affiliation:

1. Transdsciplinary Research Integration Center, Research Organization of Information and Systems, Toranomon, Tokyo, Japan 105-0001

2. Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan 411-8540 and

3. RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan 230-0045

Abstract

Abstract Early in the process of speciation, reproductive failures occur in hybrid animals between genetically diverged populations. The sterile hybrid animals are often males in mammals and they exhibit spermatogenic disruptions, resulting in decreased number and/or malformation of mature sperms. Despite the generality of this phenomenon, comparative study of phenotypes in hybrid males from various crosses has not been done, and therefore the comprehensive genetic basis of the disruption is still elusive. In this study, we characterized the spermatogenic phenotype especially during meiosis in four different cases of reproductive isolation: B6-ChrXMSM, PGN-ChrXMSM, (B6 × Mus musculus musculus-NJL/Ms) F1, and (B6 × Mus spretus) F1. The first two are consomic strains, both bearing the X chromosome of M. m. molossinus; in B6-ChrXMSM, the genetic background is the laboratory strain C57BL/6J (predominantly M. m. domesticus), while in PGN-ChrXMSM the background is the PGN2/Ms strain purely derived from wild M. m. domesticus. The last two cases are F1 hybrids between mouse subspecies or species. Each of the hybrid males exhibited cell-cycle arrest and/or apoptosis at either one or two of three distinct meiotic stages: premeiotic stage, zygotene-to-pachytene stage of prophase I, and metaphase I. This study shows that the sterility in hybrid males is caused by spermatogenic disruptions at multiple stages, suggesting that the responsible genes function in different cellular processes. Furthermore, the stages with disruptions are not correlated with the genetic distance between the respective parental strains.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3