Multivariate Analysis of Genotype–Phenotype Association

Author:

Mitteroecker Philipp1,Cheverud James M2,Pavlicev Mihaela3

Affiliation:

1. Department of Theoretical Biology, University of Vienna, A-1090 Vienna, Austria

2. Department of Biology, Loyola University of Chicago, Chicago, Illinois

3. Department of Pediatrics, Cincinnati Children’s Hospital Medical Centre, Cincinnati, Ohio

Abstract

Abstract With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated—in terms of effect size—with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype–phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype–phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype–phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype–phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3—the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype–phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference63 articles.

1. Multivariate prediction using softly shrunk reduced-rank regression.;Aldrin;Am. Stat.,2000

2. Voxel-based morphometry—the methods.;Ashburner;Neuroimage,2000

3. Analysis of genetic marker-phenotype relationships by jack-knifed partial least squares regression (plsr).;Bjørnstad;Hereditas,2004

4. Measuring and Reasoning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3