A General Bayesian Approach to Analyzing Diallel Crosses of Inbred Strains

Author:

Lenarcic Alan B1,Svenson Karen L2,Churchill Gary A2,Valdar William1

Affiliation:

1. Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7265 and

2. The Jackson Laboratory, Bar Harbor, Maine 04609

Abstract

Abstract The classic diallel takes a set of parents and produces offspring from all possible mating pairs. Phenotype values among the offspring can then be related back to their respective parentage. When the parents are diploid, sexed, and inbred, the diallel can characterize aggregate effects of genetic background on a phenotype, revealing effects of strain dosage, heterosis, parent of origin, epistasis, and sex-specific versions thereof. However, its analysis is traditionally intricate, unforgiving of unplanned missing information, and highly sensitive to imbalance, making the diallel unapproachable to many geneticists. Nonetheless, imbalanced and incomplete diallels arise frequently, albeit unintentionally, as by-products of larger-scale experiments that collect F1 data, for example, pilot studies or multiparent breeding efforts such as the Collaborative Cross or the Arabidopsis MAGIC lines. We present a general Bayesian model for analyzing diallel data on dioecious diploid inbred strains that cleanly decomposes the observed patterns of variation into biologically intuitive components, simultaneously models and accommodates outliers, and provides shrinkage estimates of effects that automatically incorporate uncertainty due to imbalance, missing data, and small sample size. We further present a model selection procedure for weighing evidence for or against the inclusion of those components in a predictive model. We evaluate our method through simulation and apply it to incomplete diallel data on the founders and F1's of the Collaborative Cross, robustly characterizing the genetic architecture of 48 phenotypes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3