Rescue From Oculocutaneous Albinism Type 4 Using Medaka slc45a2 cDNA Driven by Its Own Promoter

Author:

Fukamachi Shoji12,Kinoshita Masato3,Tsujimura Taro1,Shimada Atsuko4,Oda Shoji1,Shima Akihiro4,Meyer Axel2,Kawamura Shoji1,Mitani Hiroshi1

Affiliation:

1. Department of Integrated Biosciences, University of Tokyo, Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8562, Japan

2. Department of Biology, University of Konstanz, D-78457 Konstanz, Germany

3. Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan and

4. Department of Biological Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Abstract Patients and vertebrate mutants with oculocutaneous albinism type 4 (OCA4) have mutations in the solute carrier family 45 member 2 (slc45a2) gene. However, there is no empirical evidence for this gene–phenotype relationship. There is a unique OCA4 mutant in medaka (b) that exhibits albinism only in the skin, but the mechanism underlying this phenotype is also unknown. In this study, we rescued medaka OCA4 phenotypes, in both the eyes and the skin, by micro-injection of an slc45a2-containing genomic fragment or slc45a2 cDNA driven by its own 0.9-kb promoter. We also identified a spontaneous nucleotide change of 339 bp in the promoter as the b mutation. There are multiple transcription start sites in medaka slc45a2, as in its human ortholog, and only the shortest and eye-specific mRNA is transcribed with the b mutation. Interestingly, we further revealed a conserved pyrimidine (Py)-rich sequence of ∼10 bp in the promoter by medaka–pufferfish comparative genomics and verified that it plays an indispensable role for expression of slc45a2 in the skin. Further studies of the 0.9-kb promoter identified in this study should provide insights into the cis/trans-regulatory mechanisms underlying the ocular and cutaneous expression of slc45a2.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3