Affiliation:
1. Program in Molecular and Cellular Biology and
2. Department of Genome Sciences, University of Washington, Seattle, Washington 98195
Abstract
Abstract
Fluoxetine (Prozac) is one of the most widely prescribed pharmaceuticals, yet important aspects of its mechanism of action remain unknown. We previously reported that fluoxetine and related antidepressants induce nose muscle contraction of C. elegans. We also reported the identification and initial characterization of mutations in seven C. elegans genes that cause defects in this response (Nrf, nose resistant to fluoxetine). Here we present genetic evidence that the known nrf genes can be divided into two subgroups that confer sensitivity to fluoxetine-induced nose contraction by distinct pathways. Using both tissue-specific promoters and genetic mosaic analysis, we show that a gene from one of these classes, nrf-6, functions in the intestine to confer fluoxetine sensitivity. Finally, we molecularly identify nrf-5, another gene in the same class. The NRF-5 protein is homologous to a family of secreted lipid-binding proteins with broad ligand specificity. NRF-5 is expressed in the intestine and is likely secreted into the pseudocoelomic fluid, where it could function to transport fluoxetine. One model that explains these findings is that NRF-5 binds fluoxetine and influences its presentation or availability to in vivo targets.
Publisher
Oxford University Press (OUP)
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献