Drift Barriers to Quality Control When Genes Are Expressed at Different Levels

Author:

Xiong Kun1,McEntee Jay P2,Porfirio David J3,Masel Joanna2

Affiliation:

1. Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721

2. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721

3. Department of Computer Science, University of Arizona, Tucson, Arizona 85721

Abstract

Abstract Gene expression is imperfect, sometimes leading to toxic products. Solutions take two forms: globally reducing error rates, or ensuring that the consequences of erroneous expression are relatively harmless. The latter is optimal, but because it must evolve independently at so many loci, it is subject to a stringent “drift barrier”—a limit to how weak the effects of a deleterious mutation s can be, while still being effectively purged by selection, expressed in terms of the population size N of an idealized population such that purging requires s < −1/N. In previous work, only large populations evolved the optimal local solution, small populations instead evolved globally low error rates, and intermediate populations were bistable, with either solution possible. Here, we take into consideration the fact that the effectiveness of purging varies among loci, because of variation in gene expression level, and variation in the intrinsic vulnerabilities of different gene products to error. The previously found dichotomy between the two kinds of solution breaks down, replaced by a gradual transition as a function of population size. In the extreme case of a small enough population, selection fails to maintain even the global solution against deleterious mutations, explaining the nonmonotonic relationship between effective population size and transcriptional error rate that was recently observed in experiments on Escherichia coli, Caenorhabditis elegans, and Buchnera aphidicola.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3