Affiliation:
1. Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, The Netherlands and
2. Solea bv, Westerduinweg 6, IJmuiden, The Netherlands
Abstract
Abstract
Captive populations where natural mating in groups is used to obtain offspring typically yield unbalanced population structures with highly skewed parental contributions and unknown pedigrees. Consequently, for genetic parameter estimation, relationships need to be reconstructed or estimated using DNA marker data. With missing parents and natural mating groups, commonly used pedigree reconstruction methods are not accurate and lead to loss of data. Relatedness estimators, however, infer relationships between all animals sampled. In this study, we compared a pedigree relatedness method and a relatedness estimator (“molecular relatedness”) method using accuracy of estimated breeding values. A commercial data set of common sole, Solea solea, with 51 parents and 1953 offspring (“full data set”) was used. Due to missing parents, for 1338 offspring, a pedigree could be reconstructed with 10 microsatellite markers (“reduced data set”). Cross-validation of both methods using the reduced data set showed an accuracy of estimated breeding values of 0.54 with pedigree reconstruction and 0.55 with molecular relatedness. Accuracy of estimated breeding values increased to 0.60 when applying molecular relatedness to the full data set. Our results indicate that pedigree reconstruction and molecular relatedness predict breeding values equally well in a population with skewed contributions to families. This is probably due to the presence of few large full-sib families. However, unlike methods with pedigree reconstruction, molecular relatedness methods ensure availability of all genotyped selection candidates, which results in higher accuracy of breeding value estimation.
Publisher
Oxford University Press (OUP)
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献