Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2

Author:

Juanes M Angeles1,Piatti Simonetta1

Affiliation:

1. Centre de Recherche en Biologie Cellulaire de Montpellier, 34293 Montpellier, France

Abstract

Abstract Formins are widespread actin-polymerizing proteins that play pivotal roles in a number of processes, such as cell polarity, morphogenesis, cytokinesis, and cell migration. In agreement with their crucial function, formins are prone to a variety of regulatory mechanisms that include autoinhibition, post-translational modifications, and interaction with formin modulators. Furthermore, activation and function of formins is intimately linked to their ability to interact with membranes. In the budding yeast Saccharomyces cerevisiae, the two formins Bni1 and Bnr1 play both separate and overlapping functions in the organization of the actin cytoskeleton. In addition, they are controlled by both common and different regulatory mechanisms. Here we show that proper localization of both formins requires the redundant E3 ubiquitin ligases Dma1 and Dma2, which were previously involved in spindle positioning and septin organization. In dma1dma2 double mutants, formin distribution at polarity sites is impaired, thus causing defects in the organization of the actin cable network and hypersensitivity to the actin depolymerizer latrunculin B. Expression of a hyperactive variant of Bni1 (Bni1-V360D) rescues these defects and partially restores proper spindle positioning in the mutant, suggesting that the failure of dma1dma2 mutant cells to position the spindle is partly due to faulty formin activity. Strikingly, Dma1/2 interact physically with both formins, while their ubiquitin-ligase activity is required for formin function and polarized localization. Thus, ubiquitylation of formin or a formin interactor(s) could promote formin binding to membrane and its ability to nucleate actin. Altogether, our data highlight a novel level of formin regulation that further expands our knowledge of the complex and multilayered controls of these key cytoskeleton organizers.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3