Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans

Author:

Bhat Jaffar M,Hutter Harald1

Affiliation:

1. Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

Abstract Precise and accurate axon tract formation is an essential aspect of brain development. This is achieved by the migration of early outgrowing axons (pioneers) allowing later outgrowing axons (followers) to extend toward their targets in the embryo. In Caenorhabditis elegans the AVG neuron pioneers the right axon tract of the ventral nerve cord, the major longitudinal axon tract. AVG is essential for the guidance of follower axons and hence organization of the ventral nerve cord. In an enhancer screen for AVG axon guidance defects in a nid-1/Nidogen mutant background, we isolated an allele of aex-3. aex-3 mutant animals show highly penetrant AVG axon navigation defects. These defects are dependent on a mutation in nid-1/Nidogen, a basement membrane component. Our data suggest that AEX-3 activates RAB-3 in the context of AVG axon navigation. aex-3 genetically acts together with known players of vesicular exocytosis: unc-64/Syntaxin, unc-31/CAPS, and ida-1/IA-2. Furthermore our genetic interaction data suggest that AEX-3 and the UNC-6/Netrin receptor UNC-5 act in the same pathway, suggesting AEX-3 might regulate the trafficking and/or insertion of UNC-5 at the growth cone to mediate the proper guidance of the AVG axon.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3