Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data

Author:

Kim Junghi,Zhang Yiwei,Pan Wei1

Affiliation:

1. Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

Abstract Testing for genetic association with multiple traits has become increasingly important, not only because of its potential to boost statistical power, but also for its direct relevance to applications. For example, there is accumulating evidence showing that some complex neurodegenerative and psychiatric diseases like Alzheimer’s disease are due to disrupted brain networks, for which it would be natural to identify genetic variants associated with a disrupted brain network, represented as a set of multiple traits, one for each of multiple brain regions of interest. In spite of its promise, testing for multivariate trait associations is challenging: if not appropriately used, its power can be much lower than testing on each univariate trait separately (with a proper control for multiple testing). Furthermore, differing from most existing methods for single-SNP–multiple-trait associations, we consider SNP set-based association testing to decipher complicated joint effects of multiple SNPs on multiple traits. Because the power of a test critically depends on several unknown factors such as the proportions of associated SNPs and of traits, we propose a highly adaptive test at both the SNP and trait levels, giving higher weights to those likely associated SNPs and traits, to yield high power across a wide spectrum of situations. We illuminate relationships among the proposed and some existing tests, showing that the proposed test covers several existing tests as special cases. We compare the performance of the new test with that of several existing tests, using both simulated and real data. The methods were applied to structural magnetic resonance imaging data drawn from the Alzheimer’s Disease Neuroimaging Initiative to identify genes associated with gray matter atrophy in the human brain default mode network (DMN). For genome-wide association studies (GWAS), genes AMOTL1 on chromosome 11 and APOE on chromosome 19 were discovered by the new test to be significantly associated with the DMN. Notably, gene AMOTL1 was not detected by single SNP-based analyses. To our knowledge, AMOTL1 has not been highlighted in other Alzheimer’s disease studies before, although it was indicated to be related to cognitive impairment. The proposed method is also applicable to rare variants in sequencing data and can be extended to pathway analysis.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference55 articles.

1. Alzheimer’s disease facts and figures.;Alzheimer’s Association;Alzheimers Dement.,2015

2. Alzheimer’s Association, 2015b Changing the trajectory of Alzheimer’s disease: how a treatment by 2025 saves lives and dollars. Available at: http://www.alz.org/documents_custom/trajectory.pdf.

3. Conduct disorder and ADHD: evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study.;Anney;Am. J. Med. Genet. B Neuropsychiatr. Genet.,2008

4. Maximizing the power in principal components analysis of correlated phenotypes.;Aschard;Am. J. Hum. Genet.,2014

5. Alzheimer as a default mode network disease: a grey matter, functional and structural connectivity study.;Balthazar;Neurology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3