Affiliation:
1. School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
Abstract
Abstract
The genetic basis of stochastic variation within a defined environment, and the consequences of such micro-environmental variance for fitness are poorly understood. Using a multigenerational breeding design in Drosophila serrata, we demonstrated that the micro-environmental variance in a set of morphological wing traits in a randomly mating population had significant additive genetic variance in most single wing traits. Although heritability was generally low (<1%), coefficients of additive genetic variance were of a magnitude typical of other morphological traits, indicating that the micro-environmental variance is an evolvable trait. Multivariate analyses demonstrated that the micro-environmental variance in wings was genetically correlated among single traits, indicating that common mechanisms of environmental buffering exist for this functionally related set of traits. In addition, through the dominance genetic covariance between the major axes of micro-environmental variance and fitness, we demonstrated that micro-environmental variance shares a genetic basis with fitness, and that the pattern of selection is suggestive of variance-reducing selection acting on micro-environmental variance.
Publisher
Oxford University Press (OUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献