Mathematical Constraints on FST: Biallelic Markers in Arbitrarily Many Populations

Author:

Alcala Nicolas1,Rosenberg Noah A

Affiliation:

1. Department of Biology, Stanford University, California 94305-5020

Abstract

Abstract F ST is one of the most widely used statistics in population genetics. Recent mathematical studies have identified constraints that challenge interpretations of FST as a measure with potential to range from 0 for genetically similar populations to 1 for divergent populations. We generalize results obtained for population pairs to arbitrarily many populations, characterizing the mathematical relationship between FST, the frequency M of the more frequent allele at a polymorphic biallelic marker, and the number of subpopulations K. We show that for fixed K, FST has a peculiar constraint as a function of M, with a maximum of 1 only if M=i/K, for integers i with ⌈K/2⌉≤i≤K−1. For fixed M, as K grows large, the range of FST becomes the closed or half-open unit interval. For fixed K, however, some M<(K−1)/K always exists at which the upper bound on FST lies below 22−2≈0.8284. We use coalescent simulations to show that under weak migration, FST depends strongly on M when K is small, but not when K is large. Finally, examining data on human genetic variation, we use our results to explain the generally smaller FST values between pairs of continents relative to global FST values. We discuss implications for the interpretation and use of FST.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3