The Number of Mutations Selected During Adaptation in a Laboratory Population of Saccharomyces cerevisiae

Author:

Zeyl Clifford1

Affiliation:

1. Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109

Abstract

Abstract There is currently limited empirical and theoretical support for the prevailing view that adaptation typically results from the fixation of many mutations, each with small phenotypic effects. Recent theoretical work suggests that, on the contrary, most of the phenotypic change during an episode of adaptation can result from the selection of a few mutations with relatively large effects. I studied the genetics of adaptation by populations of budding yeast to a culture regime of daily hundredfold dilution and transfer in a glucose-limited minimal liquid medium. A single haploid genotype isolated after 2000 generations showed a 76% fitness increase over its ancestor. This evolved haploid was crossed with its ancestor, and tetrad dissections were used to isolate a complete series of six meiotic tetrads. The Castle-Wright estimator of the number of loci at which adaptive mutations had been selected, modified to account for linkage and variation among mutations in the size of their effect, is 4.4. The estimate for a second haploid genotype, isolated from a separate population and with a fitness gain of 60%, was 2.7 loci. Backcrosses to the ancestor with the first evolved genotype support the inference that adaptation resulted primarily from two to five mutations. These backcrosses also indicated that deleterious mutations had hitchhiked with adaptive mutations in this evolved genotype.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3