Affiliation:
1. Department of Animal Science, University of Nebraska-Lincoln, Nebraska 68583
Abstract
Abstract
Genetic connectedness refers to a measure of genetic relatedness across management units (e.g., herds and flocks). With the presence of high genetic connectedness in management units, best linear unbiased prediction (BLUP) is known to provide reliable comparisons between estimated genetic values. Genetic connectedness has been studied for pedigree-based BLUP; however, relatively little attention has been paid to using genomic information to measure connectedness. In this study, we assessed genome-based connectedness across management units by applying prediction error variance of difference (PEVD), coefficient of determination (CD), and prediction error correlation r to a combination of computer simulation and real data (mice and cattle). We found that genomic information (G) increased the estimate of connectedness among individuals from different management units compared to that based on pedigree (A). A disconnected design benefited the most. In both datasets, PEVD and CD statistics inferred increased connectedness across units when using G- rather than A-based relatedness, suggesting stronger connectedness. With r once using allele frequencies equal to one-half or scaling G to values between 0 and 2, which is intrinsic to A, connectedness also increased with genomic information. However, PEVD occasionally increased, and r decreased when obtained using the alternative form of G, instead suggesting less connectedness. Such inconsistencies were not found with CD. We contend that genomic relatedness strengthens measures of genetic connectedness across units and has the potential to aid genomic evaluation of livestock species.
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献