Behavioral and Transcriptional Response to Selection for Olfactory Behavior in Drosophila

Author:

Brown Elizabeth BORCID,Layne John E,Elchert Alexandra R,Rollmann Stephanie M1

Affiliation:

1. Department of Biological Sciences, University of Cincinnati, OH 45221

Abstract

Abstract The detection, discrimination, and behavioral responses to chemical cues in the environment can have marked effects on organismal survival and reproduction, eliciting attractive or aversive behavior. To gain insight into mechanisms mediating this hedonic valence, we applied thirty generations of divergent artificial selection for Drosophila melanogaster olfactory behavior. We independently selected for positive and negative behavioral responses to two ecologically relevant chemical compounds: 2,3-butanedione and cyclohexanone. We also tested the correlated responses to selection by testing behavioral responses to other odorants and life history traits. Measurements of behavioral responses of the selected lines and unselected controls to additional odorants showed that the mechanisms underlying responses to these odorants are, in some cases, differentially affected by selection regime and generalization of the response to other odorants was only detected in the 2,3-butanedione selection lines. Food consumption and lifespan varied with selection regime and, at times, sex. An analysis of gene expression of both selection regimes identified multiple differentially expressed genes. New genes and genes previously identified in mediating olfactory behavior were identified. In particular, we found functional enrichment of several gene ontology terms, including cell-cell adhesion and sulfur compound metabolic process, the latter including genes belonging to the glutathione S-transferase family. These findings highlight a potential role for glutathione S-transferases in the evolution of hedonic valence to ecologically relevant volatile compounds and set the stage for a detailed investigation into mechanisms by which these genes mediate attraction and aversion.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3