Combined Multistage Linear Genomic Selection Indices To Predict the Net Genetic Merit in Plant Breeding

Author:

Cerón-Rojas J Jesus1ORCID,Crossa Jose12

Affiliation:

1. Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, México City, México and

2. †Colegio de Postgraduados (COLPOS), CP56230, Montecillos, Edo. de Mexico, México

Abstract

Abstract A combined multistage linear genomic selection index (CMLGSI) is a linear combination of phenotypic and genomic estimated breeding values useful for predicting the individual net genetic merit, which in turn is a linear combination of the true unobservable breeding values of the traits weighted by their respective economic values. The CMLGSI is a cost-saving strategy for improving multiple traits because the breeder does not need to measure all traits at each stage. The optimum (OCMLGSI) and decorrelated (DCMLGSI) indices are the main CMLGSIs. Whereas the OCMLGSI takes into consideration the index correlation values among stages, the DCMLGSI imposes the restriction that the index correlation values among stages be zero. Using real and simulated datasets, we compared the efficiency of both indices in a two-stage context. The criteria we applied to compare the efficiency of both indices were that the total selection response of each index must be lower than or equal to the single-stage combined linear genomic selection index (CLGSI) response and that the correlation of each index with the net genetic merit should be maximum. Using four different total proportions for the real dataset, the estimated total OCMLGSI and DCMLGSI responses explained 97.5% and 90%, respectively, of the estimated single-stage CLGSI selection response. In addition, at stage two, the estimated correlations of the OCMLGSI and the DCMLGSI with the net genetic merit were 0.84 and 0.63, respectively. We found similar results for the simulated datasets. Thus, we recommend using the OCMLGSI when performing multistage selection.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3