MNase Profiling of Promoter Chromatin in Salmonella typhimurium-Stimulated GM12878 Cells Reveals Dynamic and Response-Specific Nucleosome Architecture

Author:

Cole Lauren,Dennis Jonathan1

Affiliation:

1. Department of Biological Science, Florida State University, Tallahassee, FL 32306

Abstract

Abstract The nucleosome is the primary unit of chromatin structure and commonly imputed as a regulator of nuclear events, although the exact mechanisms remain unclear. Recent studies have shown that certain nucleosomes can have different sensitivities to micrococcal nuclease (MNase) digestion, resulting in the release of populations of nucleosomes dependent on the concentration of MNase. Mapping MNase sensitivity of nucleosomes at transcription start sites genome-wide reveals an important functional nucleosome organization that correlates with gene expression levels and transcription factor binding. In order to understand nucleosome distribution and sensitivity dynamics during a robust genome response, we mapped nucleosome position and sensitivity using multiple concentrations of MNase. We used the innate immune response as a model system to understand chromatin-mediated regulation. Herein we demonstrate that stimulation of a human lymphoblastoid cell line (GM12878) with heat-killed Salmonella typhimurium (HKST) results in changes in nucleosome sensitivity to MNase. We show that the HKST response alters the sensitivity of -1 nucleosomes at highly expressed promoters. Finally, we correlate the increased sensitivity with response-specific transcription factor binding. These results indicate that nucleosome sensitivity dynamics reflect the cellular response to HKST and pave the way for further studies that will deepen our understanding of the specificity of genome response.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3