Maximum a posteriori Threshold Genomic Prediction Model for Ordinal Traits

Author:

Montesinos-López Abelardo1,Gutierrez-Pulido Humberto1,Montesinos-López Osval Antonio2,Crossa José34

Affiliation:

1. Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Jalisco, México

2. Facultad de Telemática, Universidad de Colima, 28040, México

3. Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Carretera Km 45, Mexico-Veracruz, CP 52640, Texcoco, México

4. Colegio de Postgraduados, CP 56230, Montecillos, Edo. de México

Abstract

Abstract Due to the ever-increasing data collected in genomic breeding programs, there is a need for genomic prediction models that can deal better with big data. For this reason, here we propose a Maximum a posteriori Threshold Genomic Prediction (MAPT) model for ordinal traits that is more efficient than the conventional Bayesian Threshold Genomic Prediction model for ordinal traits. The MAPT performs the predictions of the Threshold Genomic Prediction model by using the maximum a posteriori estimation of the parameters, that is, the values of the parameters that maximize the joint posterior density. We compared the prediction performance of the proposed MAPT to the conventional Bayesian Threshold Genomic Prediction model, the multinomial Ridge regression and support vector machine on 8 real data sets. We found that the proposed MAPT was competitive with regard to the multinomial and support vector machine models in terms of prediction performance, and slightly better than the conventional Bayesian Threshold Genomic Prediction model. With regard to the implementation time, we found that in general the MAPT and the support vector machine were the best, while the slowest was the multinomial Ridge regression model. However, it is important to point out that the successful implementation of the proposed MAPT model depends on the informative priors used to avoid underestimation of variance components.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Reference45 articles.

1. Data Mining for the Social Sciences

2. The method of probits.;Bliss;Science,1934

3. The method of probits — a correction.;Bliss;Science,1934

4. Borman, S., 2004 The expectation maximization algorithm – a short tutorial. Link: https://www.lri.fr/∼sebag/COURS/EM_algorithm.pdf.

5. Applications of Support Vector Machines for Pattern Recognition: A Survey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3