Comparative Cytology of Female Meiosis I Among Drosophila Species

Author:

Majekodunmi Ahmed,Bowen Amelia O,Gilliland William D1

Affiliation:

1. Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago IL 60614

Abstract

Abstract The physical connections established by recombination are normally sufficient to ensure proper chromosome segregation during female Meiosis I. However, nonexchange chromosomes (such as the Muller F element or “dot” chromosome in D. melanogaster) can still segregate accurately because they remain connected by heterochromatic tethers. A recent study examined female meiosis in the closely related species D. melanogaster and D. simulans, and found a nearly twofold difference in the mean distance the obligately nonexchange dot chromosomes were separated during Prometaphase. That study proposed two speculative hypotheses for this difference, the first being the amount of heterochromatin in each species, and the second being the species’ differing tolerance for common inversions in natural populations. We tested these hypotheses by examining female meiosis in 12 additional Drosophila species. While neither hypothesis had significant support, we did see 10-fold variation in dot chromosome sizes, and fivefold variation in the frequency of chromosomes out on the spindle, which were both significantly correlated with chromosome separation distances. In addition to demonstrating that heterochromatin abundance changes chromosome behavior, this implies that the duration of Prometaphase chromosome movements must be proportional to the size of the F element in these species. Additionally, we examined D. willistoni, a species that lacks a free dot chromosome. We observed that chromosomes still moved out on the meiotic spindle, and the F element was always positioned closest to the spindle poles. This result is consistent with models where one role of the dot chromosomes is to help organize the meiotic spindle.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3