Levels of Heterochiasmy During Arabidopsis Development as Reported by Fluorescent Tagged Lines

Author:

Saini Ramswaroop12,Singh Amit Kumar3ORCID,Hyde Geoffrey J4ORCID,Baskar Ramamurthy1

Affiliation:

1. Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai 600 036, India

2. Department of Biotechnology, Kalinga University, Raipur, Chhattishgarh 492101 India

3. School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel, and

4. Independent Researcher, Randwick, New South Wales, Australia

Abstract

Abstract Crossing over, the exchange of DNA between the chromosomes during meiosis, contributes significantly to genetic variation. The rate of crossovers (CO) varies depending upon the taxon, population, age, external conditions, and also, sometimes, between the sexes, a phenomenon called heterochiasmy. In the model plant Arabidopsis thaliana, the male rate of all crossover events (mCO) is typically nearly double the female rate (fCO). A previous, PCR-based genotyping study has reported that the disparity decreases with increasing parental age, because fCO rises while mCO remains stable. We revisited this topic using a fluorescent tagged lines approach to examine how heterochiasmy responded to parental age in eight genomic intervals distributed across the organism’s five chromosomes. We determined recombination frequency for, on average, more than 2000 seeds, for each interval, for each of four age groups, to estimate sex-specific CO rates. mCO did not change with age, as reported previously, but, here, fCO did not rise, and thus the levels of heterochiasmy were unchanged. We can see no methodological reason to doubt that our results reflect the underlying biology of the accessions we studied. The lack of response to age could perhaps be due to previously reported variation in CO rate among accessions of Arabidopsis.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3