Author:
Stevenson Zachary C,Moerdyk-Schauwecker Megan J,Jamison Brennen,Phillips Patrick C
Abstract
Abstract
Precision genome editing for model organisms has revolutionized functional analysis and validation of a wide variety of molecular systems. To date, the capacity to insert single-copy transgenes into the model nematode Caenorhabditis elegans has focused on utilizing either transposable elements or CRISPR-based safe harbor strategies. These methods require plate-level screening processes to avoid selecting heritable extrachromosomal arrays or rely on co-CRISPR markers to identify knock-in events. As a result, verification of transgene insertion requires anti-array selection screening methods and PCR genotyping. These approaches also rely on cloning plasmids for the addition of transgenes. Here, we present a novel safe harbor CRISPR-based integration strategy that utilizes engineered insertion locations containing a synthetic guide RNA target and a split-selection system to eliminate false positives from array formation, thereby providing integration-specific selection. This approach allows the experimenter to confirm an integration event has taken place without molecular validation or anti-array screening methods and is capable of producing integrated transgenic lines in as little as five days post-injection. To further increase the speed of generating transgenic lines, we also utilized the C. elegans native microhomology-based recombination, to assemble transgenes in-situ, removing the cloning step. We show that complete transgenes can be made and inserted into our split-selection safe harbor locations starting from PCR products, providing a clone-free and molecular-validation-free strategy for single-copy transgene integration. Overall, this combination of approaches provides an economical and rapid system for generating highly reproducible complex transgenics in C. elegans.
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology