Involvement of YAP-1, the Homolog of Yes-Associated Protein, in the Wnt-Mediated Neuronal Polarization in Caenorhabditis elegans

Author:

Lee Hanee1,Kang Junsu,Lee Junho1

Affiliation:

1. Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, Korea 08826

Abstract

Abstract Guidance molecules, receptors, and downstream signaling pathways involved in the asymmetric neuronal cell migration and process outgrowth have been identified from genetic studies using model organisms, most of which are evolutionarily conserved. In the nematode Caenorhabditis elegans, the roles of Wnt ligands and their receptors in the polarization of specific sets of neurons along the anterior-posterior (A-P) body axis have been well elucidated, but their downstream effectors are relatively unknown. Here, we report yap-1, encoding an evolutionarily conserved transcriptional co-activator, as a novel player in the Wnt-mediated asymmetric development of specific neurons in C. elegans. We found that the loss of yap-1 activity failed to restrict the dendritic extension of ALM neurons to the anterior orientation, which is similar to the phenotype caused by defective cwn-1 and cwn-2 Wnt gene activities. Cell-specific rescue experiments showed that yap-1 acts in the cell autonomous manner to polarize ALM dendrites. We also found that subcellular localization of YAP-1 was spatio-temporally regulated. The loss of yap-1 in Wnt-deficient mutants did not increase the severity of the ALM polarity defect of the mutants. Wnt-deficient animals displayed abnormal subcellular localization of YAP-1 in touch receptor neurons, suggesting that yap-1 may act downstream of the cwn-1/cwn-2 Wnt ligands for the ALM polarization process. Together, we have identified a new role for YAP-1 in neuronal development and our works will contribute to further understanding of intracellular events in neuronal polarization during animal development.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3