Tight Regulation of Srs2 Helicase Activity Is Crucial for Proper Functioning of DNA Repair Mechanisms

Author:

Bronstein Alex1,Bramson Shay1,Shemesh Keren1,Liefshitz Batia1,Kupiec Martin1

Affiliation:

1. Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel

Abstract

Abstract Proper DNA damage repair is one of the most vital and fundamental functions of every cell. Several different repair mechanisms exist to deal with various types of DNA damage, in various stages of the cell cycle and under different conditions. Homologous recombination is one of the most important repair mechanisms in all organisms. Srs2, a regulator of homologous recombination, is a DNA helicase involved in DNA repair, cell cycle progression and genome integrity. Srs2 can remove Rad51 from ssDNA, and is thought to inhibit unscheduled recombination. However, Srs2 has to be precisely regulated, as failure to do so is toxic and can lead to cell death. We noticed that a very slight elevation of the levels of Srs2 (by addition of a single extra copy of the SRS2 gene) leads to hyper-sensitivity of yeast cells to methyl methanesulfonate (MMS, a DNA damaging agent). This effect is seen in haploid, but not in diploid, cells. We analyzed the mechanism that controls haploid/diploid sensitivity and arrived to the conclusion that the sensitivity requires the activity of RAD59 and RDH54, whose expression in diploid cells is repressed. We carried out a mutational analysis of Srs2 to determine the regions of the protein required for the sensitization to genotoxins. Interestingly, Srs2 needs the HR machinery and its helicase activity for its toxicity, but does not need to dismantle Rad51. Our work underscores the tight regulation that is required on the levels of Srs2 activity, and the fact that Srs2 helicase activity plays a more central role in DNA repair than the ability of Srs2 to dismantle Rad51 filaments.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3