Structural Characterization of ABCB1, the Gene Underlying the d2 Dwarf Phenotype in Pearl Millet, Cenchrus Americanus (L.) Morrone

Author:

Parvathaneni Rajiv K1,Spiekerman John J2,Zhou Hongye3,Wu Xiaomei12,Devos Katrien M12

Affiliation:

1. Institute of Plant Breeding, Genetics and Genomics

2. Dept. of Plant Biology, and

3. Dept. of Genetics, University of Georgia, Athens, GA 30602

Abstract

Abstract Pearl millet is an important food crop in arid and semi-arid regions of South Asia and sub-Saharan Africa and is grown in Australia and the United States as a summer fodder crop. The d2 dwarf germplasm has been widely used in the last half-century to develop high-performing pearl millet hybrids. We previously mapped the d2 phenotype to a 1.6 cM region in linkage group (LG) 4 and identified the ABCB1 gene as a candidate underlying the trait. Here, we report the sequence, structure and expression of ABCB1 in tall (D2D2) and d2 dwarf (d2d2) germplasm. The ABCB1 allele in d2 dwarfs differs from that in tall inbreds by the presence of two different high copy transposable elements, one in the coding region and the second located 664 bp upstream of the ATG start codon. These transposons were present in all d2 dwarfs tested that were reported to be of independent origin and absent in the analyzed wild-type tall germplasm. We also compared the expression profile of this gene in different organs of multiple tall and d2 dwarf inbreds, including the near-isogenic inbreds at the d2 locus, Tift 23B (D2D2) and Tift 23DB (d2d2). Heterologous transformation of the tall (Ca_ABCB1) and the d2 dwarf (Ca_abcb1) pearl millet alleles in the Arabidopsis double mutant abcb1abcb19 showed that the pearl millet D2 but not the d2 allele complements the Arabidopsis abcb1 mutation. Our studies also show the importance of the COOH-terminal 22 amino acids of the ABCB1 protein in either protein function or stability.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3