Affiliation:
1. Department of Pharmacology and Toxicology; Michigan State University; East Lansing, MI 48824
2. College of Medicine; Central Michigan University; Mount Pleasant, MI 48859
3. Department of Molecular Biosciences; University of Kansas; Lawrence, KS 60045
Abstract
Abstract
During development, neuronal cells extend an axon toward their target destination in response to a cue to form a properly functioning nervous system. Rho proteins, Ras-related small GTPases that regulate cytoskeletal organization and dynamics, cell adhesion, and motility, are known to regulate axon guidance. Despite extensive knowledge about canonical Rho proteins (RhoA/Rac1/Cdc42), little is known about the Caenorhabditis elegans (C. elegans) atypical Cdc42-like family members CHW-1 and CRP-1 in regards to axon pathfinding and neuronal migration. chw-1(Chp/Wrch) encodes a protein that resembles human Chp (Wrch-2/RhoV) and Wrch-1 (RhoU), and crp-1 encodes for a protein that resembles TC10 and TCL. Here, we show that chw-1 works redundantly with crp-1 and cdc-42 in axon guidance. Furthermore, proper levels of chw-1 expression and activity are required for proper axon guidance. When examining CHW-1 GTPase mutants, we found that the native CHW-1 protein is likely partially activated, and mutations at a conserved residue (position 12 using Ras numbering, position 18 in CHW-1) alter axon guidance and neural migration. Additionally, we showed that chw-1 genetically interacts with the guidance receptor sax-3 in PDE neurons. Finally, in VD/DD motor neurons, chw-1 works downstream of sax-3 to control axon guidance. In summary, this is the first study implicating the atypical Rho GTPases chw-1 and crp-1 in axon guidance. Furthermore, this is the first evidence of genetic interaction between chw-1 and the guidance receptor sax-3. These data suggest that chw-1 is likely acting downstream and/or in parallel to sax-3 in axon guidance.
Publisher
Oxford University Press (OUP)
Subject
Genetics(clinical),Genetics,Molecular Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献