Affiliation:
1. Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
Abstract
Abstract
Switchgrass (Panicum virgatum) has been identified as a promising cellulosic biofuel crop in the United States. Construction of a genetic linkage map is fundamental for switchgrass molecular breeding and the elucidation of its genetic mechanisms for economically important traits. In this study, a novel population consisting of 139 selfed progeny of a northern lowland genotype, NL 94 LYE 16X13, was used to construct a linkage map. A total of 2493 simple sequence repeat markers were screened for polymorphism. Of 506 polymorphic loci, 80.8% showed a goodness-of-fit of 1:2:1 segregation ratio. Among 469 linked loci on the framework map, 241 coupling vs. 228 repulsion phase linkages were detected that conformed to a 1:1 ratio, confirming disomic inheritance. A total of 499 loci were mapped to 18 linkage groups (LG), of which the cumulative length was 2085.2 cM, with an average marker interval of 4.2 cM. Nine homeologous LG pairs were identified based on multi-allele markers and comparative genomic analysis. Two clusters of segregation-distorted loci were identified on LG 5b and 9b, respectively. Comparative analysis indicated a one-to-one relationship between nine switchgrass homeologous groups and nine foxtail millet (Setaria italica) chromosomes, suggesting strong homology between the two species. The linkage map derived from selfing a heterozygous parent, instead of two separate maps usually constructed for a cross-fertilized species, provides a new genetic framework to facilitate genomics research, quantitative trait locus (QTL) mapping, and marker-assisted breeding.
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献