Identification of Genes Underlying Hypoxia Tolerance inDrosophilaby a P-element Screen

Author:

Azad Priti1,Zhou Dan1,Zarndt Rachel2,Haddad Gabriel G1134

Affiliation:

1. Department of Pediatrics, University of California-San Diego, La Jolla, California 92093

2. Sanford-Burnham Medical Research Institute, La Jolla, California 92037

3. Department of Neurosciences, University of California-San Diego, La Jolla, California 92093

4. The Rady Children’s Hospital, San Diego, California 92123

Abstract

AbstractHypoxia occurs in physiologic conditions (e.g. high altitude) or during pathologic states (e.g. ischemia). Our research is focused on understanding the molecular mechanisms that lead to adaptation and survival or injury to hypoxic stress using Drosophila as a model system. To identify genes involved in hypoxia tolerance, we screened the P-SUP P-element insertion lines available for all the chromosomes of Drosophila. We screened for the eclosion rates of embryos developing under 5% O2 condition and the number of adult flies surviving one week after eclosion in the same hypoxic environment. Out of 2187 lines (covering ∼1870 genes) screened, 44 P-element lines representing 44 individual genes had significantly higher eclosion rates (i.e. >70%) than those of the controls (i.e. ∼7–8%) under hypoxia. The molecular function of these candidate genes ranged from cell cycle regulation, DNA or protein binding, GTP binding activity, and transcriptional regulators. In addition, based on pathway analysis, we found these genes are involved in multiple pathways, such as Notch, Wnt, Jnk, and Hedgehog. Particularly, we found that 20 out of the 44 candidate genes are linked to Notch signaling pathway, strongly suggesting that this pathway is essential for hypoxia tolerance in flies. By employing the UAS/RNAi-Gal4 system, we discovered that genes such as osa (linked to Wnt and Notch pathways) and lqf (Notch regulator) play an important role in survival and development under hypoxia in Drosophila. Based on these results and our previous studies, we conclude that hypoxia tolerance is a polygenic trait including the Notch pathway.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3