Genetic Structure and Linkage Disequilibrium in a Diverse, Representative Collection of the C4 Model Plant, Sorghum bicolor

Author:

Wang Yi-Hong1,Upadhyaya Hari D2,Burrell A Millie3,Sahraeian Sayed Mohammad Ebrahim4,Klein Robert R5,Klein Patricia E13

Affiliation:

1. Department of Biology, University of Louisiana at Lafayette, Louisiana 70504

2. Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India

3. Department of Horticultural Sciences and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843

4. Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843

5. USDA-ARS, Southern Plains Agricultural Research Center, College Station, Texas 77845

Abstract

Abstract To facilitate the mapping of genes in sorghum [Sorghum bicolor (L.) Moench] underlying economically important traits, we analyzed the genetic structure and linkage disequilibrium in a sorghum mini core collection of 242 landraces with 13,390 single-nucleotide polymorphims. The single-nucleotide polymorphisms were produced using a highly multiplexed genotyping-by-sequencing methodology. Genetic structure was established using principal component, Neighbor-Joining phylogenetic, and Bayesian cluster analyses. These analyses indicated that the mini-core collection was structured along both geographic origin and sorghum race classification. Examples of the former were accessions from Southern Africa, East Asia, and Yemen. Examples of the latter were caudatums with widespread geographical distribution, durras from India, and guineas from West Africa. Race bicolor, the most primitive and the least clearly defined sorghum race, clustered among other races and formed only one clear bicolor-centric cluster. Genome-wide linkage disequilibrium analyses showed linkage disequilibrium decayed, on average, within 10−30 kb, whereas the short arm of SBI-06 contained a linkage disequilibrium block of 20.33 Mb, confirming a previous report of low recombination on this chromosome arm. Four smaller but equally significant linkage disequilibrium blocks of 3.5−35.5 kb were detected on chromosomes 1, 2, 9, and 10. We examined the genes encoded within each block to provide a first look at candidates such as homologs of GS3 and FT that may indicate a selective sweep during sorghum domestication.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3