IDENTIFICATION OF RICE PURITY LEVEL FROM MIXED RICE VARIETIES USING DEEP LEARNING

Author:

Abbas Khalid,Hakim Ayesha,Nadeem Nasir,Altaf Adnan,Iqbal Hafiz Muhammad Rizwan

Abstract

The current study was conducted in Multan, Pakistan to investigate an automated appearance based system for purity level identification of seven common rice (Oryza sativa L.) varieties from mixed rice grain samples. Adulteration is a major hurdle that affects rice export in Pakistan that refers to the mixing of premium rice grain varieties with the low grade rice grains to be marketed at a high cost. This study was based on the dataset collected from Rice Research Institute, Kala Shah Kaku, Pakistan during 2018-2020. Three Pakistani premium rice varieties (Basmati Shaheen, Basmati Super, and Basmati Pak) were mixed with four low quality varieties (Basmati 198, Basmati 2000, Basmati 370 and Basmati 385) in weight ratios of 10%, 15%, 20%, 25% and 30%. Classification and recognition of purity level of basmati rice achieved average accuracy of 89.88% using convolutional neural network. The proposed system has the potential to be used at a commercial scale to test the purity level of exported rice.

Publisher

Directorate of Agricultural Information

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Paddy to Pixel: An In-depth Exploration into Classifying Diverse Rice Varieties Leveraging Advanced Convolutional Neural Network Architectures;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

2. Rice quality Prediction using Convolution Neural Network;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3