A Review on Poly-Lactic-Co-Glycolic Acid as a Unique Carrier for Controlled and Targeted Delivery Drugs

Author:

K. Prakash Raj,K. Kathiresan,P. Pandian

Abstract

In regulated and targeted drug distribution, biodegradable polymers have played a significant portion. Poly-lactic-co-glycolic acid (PLGA) has been an important desirable polymer in tissue engineering to meet a new drug delivery system. PLGAs, show a broad spectrum of erosion cycles and have tuning mechanical characteristics. Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. PLGA has been extensively studied, in particular, in the production of equipment for controlled distribution in industrial and research applications of small molecules, protein, and other macromolecules. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. PLGA has many properties such as controlled and sustained release, low cancerinducing, long-standing biomedical applications, biocompatibility with tissues and cells, and prolonged residence time. It is otherwise called as 'Smart Polymer' because improvements are fragile to conduct PLGA that has been widely examined in industrial and academic applications to produce instruments for the target delivery of tiny molecular drugs, proteins, and other large molecules. An introduction about the chemistry, physicochemical properties, manufacturing techniques of the devices, toxicity, and the reason influencing their decrease and release of the drug was given in the present study. Mathematical modelling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. Mathematical modelling applied against the target from PLGA – the devices has been clarified by discussing in the review, by explaining the underlying mathematical models and how this is used. KEY WORDS Biodegradable Polymers, PLGA, Biodegradability, Macromolecules

Publisher

Akshantala Enterprises Private Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3