Influence of Silica Fumes on Compressive Strength and Wear Properties of Glass Ionomer Cement in Dentistry

Author:

Meganadhan Anand,Sanjeev Kavitha,Sekar Mahalaxmi

Abstract

BACKGROUND Glass ionomer cements (GIC) are an interesting restorative option due to their biocompatibility. However, it has limitations that challenge its survival in oral environment due its porous set matrix influencing the properties of the cement. This study was conducted to evaluate the influence of the addition of varying concentrations of silica fumes (SF) on the properties of GIC by field emission scanning electron microscopy [FESEM] and energy-dispersive spectroscopy [EDX]. The final set matrix of GIC remains porous, compromising the mechanical properties, limiting its extended use clinically. Incorporation of silica fumes, a pozzolan, as an additive in GIC serves as a potential filler by increasing its compressive strength and reducing wear properties. METHODS The cement was divided into 5 groups based on the absence or presence of varying concentrations (0.5, 1, 1.5, 2 %) of silica fumes; conventional glass ionomer group (CG) (I) and 0.5, 1, 1.5, 2 silica fumes incorporated glass ionomer cement (SG) (II, III, IV & V) respectively. Compressive strength and wear resistance were subjected to Universal Testing Machine and Pin on Tribometer respectively. The microstructure and the elemental composition of prepared specimens of all the groups were evaluated using FESEM and EDX. Data obtained was analysed using Statistical Package for the Social Sciences (SPSS) V22.0 (IBM, USA) followed by one-way analysis of variance (ANOVA) and post hoc Tukey test (P < 0.05). RESULTS Except 0.5SG, increased compressive strength and decreased wear of glass ionomer material was observed as the concentration of silica fumes increased. Of all the concentrations, 2SG had significantly increased compressive strength (221.62 ± 22.84 MPa) compared to CG (167.38 ± 36.94 MPa) (P < 0.05). Significantly increased resistance to wear was noted in 2SG (11.80 ± 2.58 µm) compared to CG (20.40 ± 2.07 µm) (P < 0.05). The set matrix of silica fumes modified GIC showed minimal / absence of pores with dispersion of crystalline particles as the concentration of SF increased. EDX revealed similar constitution of minerals but, varied with increased concentration of silica fumes. CONCLUSIONS 2 % silica fumes incorporated glass ionomer cement (2SG) enhanced the properties of conventional glass ionomer cement. KEY WORDS Compressive Strength, EDX, Field Emission Scanning Electron Microscope, Glass Ionomer Cement, Silica Fumes, Pozzolan

Publisher

Akshantala Enterprises Private Limited

Subject

General Medicine

Reference20 articles.

1. [1] Anusavice KJ, Philips RW, Shen C, et al. Phillip's science of dental materials. 11th edn. St. Louis: Sanders 2005.

2. Applied dental materials;JF;Br Dent J,2009

3. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment;Bonifácio;Aust Dent J,2009

4. Porosity evaluation and pore size distribution of a novel directly placed ceramic restorative material;Geirsson;Dent Mater,2004

5. Mechanical properties and microstructures of glass-ionomer cements;Xie;Dent Mater,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3