Role of PET-CT in Aiding Diagnosis of Various Neurological Conditions – A Case Series

Author:

Pabla Harleen Singh,P.R. Gokulakrishnan,Murali Arunan,P.M. Venkata Sai

Abstract

BACKGROUND PET-CT is an imaging modality which electronically detects positron-emitting radiopharmaceuticals in the human body and reveals its exact anatomical location.1 PET CT measures the metabolic and functional activity of living tissue noninvasively.1 This technology is utilized in diagnosis, planning treatment and predicting outcomes in various neurological conditions.1 Depending upon various patterns of FDG uptake in different parts of brain, 18FDG PET-CT allows us to differentiate between various types of dementia.2 PET CT allows tracking the course of disease and revealing the severity of the disease.2 In this article, we discuss the imaging findings of normal 18 FDG PET-CT of brain and 8 different neurological conditions with their corresponding brain PET-CT findings. METHODS To study the role of 18FDG-PET/CT in neurological conditions, we identified 8 different patients who underwent 18FDG-PET/CT imaging of brain for clinically suspected different neurological diseases at Department of Radiodiagnosis-Centre of Excellence (CERIS), SRIHER, Chennai, between 2015 and 2019. Siemens Biograph Horizon 16-slice PET/CT scanner with TrueV was used. Syngo.Via Version VB30A software was used. 18F- Fluorodeoxyglucose was the radiotracer used [Dose: 3-7 mCi]. After the scan, different patterns of 18 FDG uptake in the brain were analyzed in each of these patients. RESULTS 18 FDG PET-CT showed reduced uptake in the epileptogenic foci in the brain. Alzheimer’s disease showed decreased FDG uptake in bilateral precuneus, posterior cingulate region, parietal cortex and frontal cortex. Fronto-temporal dementia revealed reduced FDG uptake in anterior cingulate gyrus and anterior temporal lobe. Primary progressive aphasia showed asymmetrical reduced metabolic activity in the bilateral frontal and temporal lobes. Progressive supranuclear palsy revealed reduced metabolic activity in bilateral paramedian frontal region, head of caudate nuclei and midbrain; Multi systemic atrophy showed reduced metabolic activity in midbrain, pons, medulla oblongata and the cerebellum; AIDS related dementia showed global hypometabolism with preserved uptake in basal ganglia. CONCLUSIONS 18FDG-PET/CT has a vital complementary role in the evaluation CNS disorders along with clinical examination, other imaging modalities like CT, MRI, and electroencephalogram (EEG). Radiologists should be aware of these different patterns of FDG uptake to aid the clinical diagnosis and early treatment. KEY WORDS 18 FDG PET-CT, 18FDG Uptake, Hypometabolism, PET-CT Brain

Publisher

Akshantala Enterprises Private Limited

Subject

General Medicine

Reference13 articles.

1. Positron emission tomography in neurological diseases;Kumar;Neurol India,2005

2. [2] Tripathi RP. Recent trends in molecular imaging : PET/CT in neurology. Ann Natl Acad Med Sci (India) 2014;50(1&2):34-44.

3. Applications of positron emission tomography (PET) in neurology;YF;J Neurol Neurosurg Psychiatry,2004

4. Brain: normal variations and benign findings in fluorodeoxyglucose- PET/computed tomography imaging;Berti;PET Clin,2014

5. [5] Giesel FL, Mehndiratta A, Locklin J, et al. Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 2009;31(2):106-14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3