Whole-Plant Tissue Nitrogen Content Measurement Using Image Analyses in Floriculture Crops

Author:

Adhikari Ranjeeta,Nemali Krishna

Abstract

Abstract Research on image analysis techniques for estimating plant N status in floriculture is limited. We subjected poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) cultivars to five nitrogen concentration treatments for 45 days and captured grayscale images of plants briefly exposed to 450, 625, 660, and 870 nm of light using a multispectral image station. Images were processed to calculate normalized reflectance ratios, including R870/450, R870/625, and R870/660. Dried shoots were analyzed in a laboratory for whole-plant tissue N content (mg·g−1). Results indicated that whole-plant N content ranged from 21 to 44 mg·g−1 in different N treatments. Among the reflectance ratios, R870/625 showed higher correlation with whole-plant N content in different cultivars of poinsettia (0.72< r2 <0.78) compared to R870/450 and R870/660. Based on these results, we custom-built a low-cost image sensor that can be remotely controlled to capture red (625 nm) and near infrared (870 nm) images of plants and transfer images to a cloud storage for processing. The normalized reflectance ratio measured by the image sensor was linearly related to the whole-plant N content (r2=0.84) and more accurate than soil plant analysis development (SPAD) measurements at predicting plant N status. These results indicate that image analysis in general and images captured by low-cost image sensors can be used for estimation of plant N status in floriculture. Index words: Chlorophyll, poinsettia, red light reflectance, plant segmentation. Chemicals used in this study: Water soluble 15-5-15 Cal Mg. Species used in this study: Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch, cultivars ‘Christmas Beauty Marble', ‘Christmas Tradition', ‘Christmas Glory White', and ‘Wintersun White').

Publisher

Horticultural Research Institute

Subject

Horticulture,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3